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Abstract
In this study, we evaluate four variance reduction methods for on-

line A/B testing in a real marketplace environment, focusing on

continuous business metrics. Our contribution lies in systematically

assessing the statistical impact of outlier capping, CUPED, CUPAC,

and Doubly Robust estimation on experiment reliability. To enable

ground-truth evaluation in the absence of known treatment effects,

we use real historical data consisting of tens of millions of user-

metric observations across 18 past experiments from a large-scale

marketplace platform, and inject synthetic treatment effects into

randomized control group samples. While all four methods suc-

cessfully reduce confidence interval width, we find that CUPAC

and outlier capping provide average confidence interval width re-

duction above 35%, while doubly robust estimation and CUPED

achieve a reduction of up to 21%. We also analyze the computa-

tional speed of each method and examine how data parameters,

such as sample size, effect size, and noise levels, influence variance

reduction. This research is particularly relevant for online market-

places, where experiment sensitivity is critical for detecting small

but meaningful changes in user behavior or platform performance.

Our findings help bridge experimental design and causal inference,

offering practical guidance on balancing variance reduction and

statistical validity in real-world experimentation pipelines.
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1 Introduction
From startups to global platforms, companies now routinely use

experimentation to guide product decisions, design, and feature

rollouts. Google, LinkedIn, and Microsoft launch more than 20,000

A/B tests yearly [13]. As platforms mature and competition intensi-

fies, the ability to quickly and reliably detect meaningful effects in

experiments has become a key differentiator in the tech industry

[16, 19].

In fast-paced product teams, time and sensitivity have become

the two most critical constraints in experimentation. Sensitivity is

crucial, as even small misdetected effects in key metrics can lead to

revenue impact. While time determines how quickly teams can it-

erate and innovate. Therefore, shortening the experiment duration

without compromising statistical rigor requires more sensitive ex-

perimental designs, driving a growing interest in variance reduction

techniques [19, 13].

Suppose a product team launches a targeted promotion aiming

to boost engagement for high-value users in the luxury item seg-

ment. While the treatment is applied directly to the target users, the

challenge lies in the high variance and skewed nature of spending

behavior in this segment, where a small number of users may drive

most of the revenue. The key statistical challenge lies in estimating

the Average Treatment Effect with high precision. However, due to

behavioral noise, high estimator variance leads to wider confidence

intervals, which in turn extends the duration of experiments and

increases the risk of false negatives. Variance reduction techniques

aim to reduce this estimation variance - not by changing the under-

lying data or effect size, but by leveraging additional structure (like

covariates or transformations) to eliminate explainable variability.

In this study, we evaluate four variance reduction techniques:

CUPED, CUPAC, outlier capping, and Doubly Robust estimation,

on real business metrics from historical A/B tests. This work builds

upon prior literature in statistical adjustment, causal inference, and

machine learning-guided experimentation, but differs by applying

a unified framework to evaluate multiple techniques across com-

mon marketplace metrics, doing it on a real historical dataset with

millions of observations.

This paper is organized as follows. Section 2 introduces random-

ized experiments, and the four variance reduction methods applied

in the paper. Section 3 reviews related work on variance reduction.

Section 4 presents the methodological details of each approach,

while the practical results from applying the methods are detailed

in Section 5. We conclude in Section 6 with recommendations for

future research.
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2 Preliminaries
Online experimentation, commonly referred to as A/B testing, is

a widely used methodology for evaluating the impact of interven-

tions by randomly assigning users to control and treatment groups.

The randomization process ensures that confounding variables

are evenly distributed across groups, thereby providing a robust

foundation for causal inference [10, 5].

Causal inference in the context of online experimentation aims

to estimate the effect of a treatment or intervention on an outcome

of interest. Let 𝑋1, . . . , 𝑋𝑛 represent i.i.d. observations from the

control group, and 𝑌1, . . . , 𝑌𝑛 represent i.i.d. observations from the

treatment group. The population means for each group are denoted

by 𝜇𝑥 = E[𝑋 ] and 𝜇𝑦 = E[𝑌 ], respectively. The Average Treat-

ment Effect (ATE) is defined as the difference in expected outcomes

between the treatment and control groups: ATE = 𝜇𝑦 − 𝜇𝑥 .

The sample size 𝑛 required to detect a treatment effect with

80% statistical power is approximately given by 𝑛 ≈ 16𝜎2

𝛿2
, where

𝛿 denotes the minimum detectable effect size [17]. Consequently,

a reduction in variance 𝜎2
leads to a proportional decrease in the

required sample size, thereby improving the sensitivity and speed

of the experimental process [5]. Reducing the variance of the ATE

estimate directly translates into narrower confidence intervals. This

enables teams to detect smaller effects more reliably or reach con-

clusions with fewer samples.

Therefore, variance reduction techniques are widely employed to

eliminate explainable variation in outcome metrics using relevant

covariates. These methods span from classical linear adjustments to

machine learning-based estimators and simple metric transforma-

tions, each aiming to improve statistical power without increasing

sample size. The mentioned techniques aim to improve the effi-

ciency of treatment effect estimation by incorporating additional

information (or limiting it in the case of outliers). Application of

such methods is not guaranteed to avoid introducing additional

variance and also carries a potential risk of bias if the model is

misspecified for the specific distribution of the experiment data.

Evidently, bias could be introduced by heavy outliers [20] or nonop-

timal selection of covariates [18, 9].

3 Related Work
The methods described in the literature for reducing the variance

of experiments can be classified according to the type of data used,

whether it’s collected during the experiment or before the experi-

ment. One way of using in-experiment data preprocessing could be

to use outlier capping to reduce variance [7]. Other in-experiment

techniques include variance-weighted estimators [14] and rank

transformation techniques [11]. A different class of methods lever-

ages pre-treatment data. Pre-treatment metrics as covariates in a lin-

ear regression adjustment were introduced byMicrosoft researchers

[1] with the method called CUPED (Controlled-experiment Using

Pre-Experiment Data). Pushing CUPED further, using sequentially

valid confidence intervals for relative lift [15], and metric decom-

position [6] are introduced. Another method - CUPAC (Controlled-

experiment Using Predictions as Covariates) generalizes CUPED by

using machine learning models trained on pre-experiment data pre-

dictions as covariates in the adjustment model [16]. Doubly Robust

(DR) estimators can also be used to reduce variance in an A/B test

[2, 8]. DR estimators combine regression modeling with inverse

propensity score weighting, offering bias protection even if one

of the models is misspecified. While individual variance reduction

techniques have been studied, a systematic comparison of multiple

methods is less commonly explored in the literature. A few online

resources compare multiple covariate adjustment techniques [3],

and some compare the newly introduced method against another

[19, 16].

This study makes a step toward a systematic ablation of variance

reduction techniques by implementing and comparing fourmethods

of different complexity on historical A/B test data. By unifying

evaluation across independently sourced metrics and controlled

setups, we aim to inform method selection based on empirical

performance.

4 Variance Reduction Methods
In this study, we focus on four variance reduction techniques: out-

lier capping, CUPED, CUPAC, and Doubly Robust estimation, which

span a spectrum of complexity, assumptions, and real-world applica-

bility. These methods reflect the diversity of trade-offs encountered

in experimentation platforms, balancing model assumptions, im-

plementation complexity and interpretability.

4.1 First Approach: Outlier Capping
Outlier capping is a technique that can be used in online experi-

ments tomitigate the influence of extreme values. It usually involves

setting a predefined upper threshold and replacing any observa-

tions that exceed these limits with the threshold values themselves

[12].

Such metric transformations are especially relevant when analyz-

ing long-tailed distributions, which frequently arise in real-world

experimentation platforms. Unlike covariate adjustment methods,

which rely on historical or unit-level covariates, outlier capping

is independent of past observations and thus can be applied di-

rectly to current data, making it applicable to new customer tests

or experiments with limited historical context. However, its main

limitation lies in its lack of a formal bias correction mechanism,

and its effectiveness depends on appropriate threshold selection. In

our implementation, we used a threshold of 5 standard deviations

from the mean, a common heuristic in industrial applications.

4.2 Second Approach: CUPED
CUPED is a variance reduction technique that leverages pre-experiment

data to adjust the estimation of treatment effects, developed by re-

searchers at Microsoft [1].

The method can be expressed as follows:

𝑌
cuped

1
= 𝑌1 − 𝜃𝑋 + 𝜃E[𝑋 ] (1)

where 𝑌
cuped

𝑖
denotes the CUPED-adjusted outcome for unit 𝑖 , used

to estimate the Average Treatment Effect with reduced variance.

Here, 𝑌𝑖 represents the observed outcome for unit 𝑖 during the

experiment, while 𝑋𝑖 is a pre-experiment covariate known not to

be influenced by the treatment. The adjustment relies on the mean-

centered transformation 𝑋𝑖 − 𝑋 , where 𝑋 is the average covariate

value across all units.
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The 𝜃 =
Cov(𝑋,𝑌 )
Var(𝑋 ) coefficient is computed from the pooled data

and quantifies the linear association between the covariate and

the outcome. This formulation removes variation explained by 𝑋 ,

thereby enhancing the precision of treatment effect estimation with-

out introducing bias under the assumption of random assignment

[4].

CUPED is quite easy to implement and interpret, making it a

popular baseline in experimentation platforms. However, it assumes

a linear relationship between the covariate and the outcome, and

its performance degrades if this assumption is violated or if pre-

treatment data is noisy or weakly correlated with the outcome.

In our implementation, we used a pre-experiment metric mea-

sured two weeks prior to the treatment, which showed a moderate

to strong correlation with the outcome, depending on the tested

metric of each experiment.

4.3 Third Approach: CUPAC
CUPAC (Controlled-experiment Using Predictions as Covariates)

generalizes CUPED by allowing for more flexible covariate adjust-

ment. Instead of using a single linear pre-experimentmetric, CUPAC

trains a machine learning model on historical data to predict the

outcome based on available covariates. The predicted values 𝑌𝑖 are

then used to adjust the observed outcomes and reduce variance:

𝑌
cupac

𝑖
= 𝑌𝑖 − 𝜃𝑌𝑖 (2)

where 𝜃 =
Cov(𝑌,𝑌 )
Var(𝑌 ) is the optimal adjustment coefficient esti-

mated from the data.

This method allows for capturing nonlinear and higher-order re-

lationships between covariates and outcomes, often leading to more

effective variance reduction [16]. CUPAC is particularly useful in

settings where rich user history is available for accurate predictions.

However, CUPAC introduces additional complexity with necessary

model training and validation. Moreover, interpretability can suffer

compared to linear models like CUPED.

In our implementation, we used a Random Forest Regressor to

generate predicted outcomes, due to its ability to model complex

interactions and robustness to outliers.

4.4 Fourth Approach: Doubly Robust
Estimation

The Doubly Robust estimator combines two models: a regression

model to predict outcomes under treatment and control, and a

propensity score model to estimate the probability of treatment

assignment. If either model is correctly specified, the estimator

remains consistent [9].

ℎ1 (𝑋 ) = E[𝑌 | 𝑋,𝑇 = 1], ℎ0 (𝑋 ) = E[𝑌 | 𝑋,𝑇 = 0]

denote the expected outcomes conditional on covariates 𝑋 un-

der treatment and control conditions, respectively. In this setting,

𝑌 represents the observed outcome, 𝑇 ∈ {0, 1} is the treatment

assignment indicator, and 𝑋 is the set of observed pre-treatment

covariates. The functions ℎ1 (𝑋 ) and ℎ0 (𝑋 ) serve as outcome pre-

dictions under each treatment condition.

DR methods are highly flexible and can produce consistent es-

timates under weaker assumptions than other methods. However,

they are more computationally intensive and particularly sensitive

to model misspecification if both models are poorly estimated.

5 Experimental data and results
To evaluate the effectiveness of various variance reduction tech-

niques in estimating Average Treatment Effects, we conducted a

series of experiments using observational data from a large-scale on-

line marketplace. The dataset contains over 20 million user-metric

observations across 18 historical A/B experiments conducted be-

tween 2022 and 2024. These experiments span key business metrics

related to both the buyer and the seller in a marketplace. For each

user, we also retrieved corresponding pre-treatment behavior met-

rics from two weeks prior to treatment assignment, where available.

Because true treatment effects are unobservable in historical data,

we simulated an A/A test setup by randomly splitting control group

users into two subgroups: pseudo-treatment and pseudo-control.

To emulate a treatment effect, we injected a synthetic shift into a se-

lected continuous outcome metric for the pseudo-treatment group.

Specifically, we added noise sampled from a normal distribution

with a predefined mean and standard deviation. The synthetic effect

was applied as an absolute shift in the metric values. This setup en-

ables us to calculate the known injected Average Treatment Effect

and evaluate how accurately each variance reduction method recov-

ers it. We verified that no significant differences existed between

the subgroups prior to injection using Welch’s t-test.

As shown in Figure 1, the density curves display the distribu-

tion of the Average Treatment Effect (ATE) across multiple A/A

test runs, where an absolute synthetic effect of 0.5 was introduced

for evaluation. The "No method" distribution (black line), repre-

senting the unadjusted ATE, was computed without applying any

variance reduction techniques. Compared to this baseline, the ad-

justed estimators yield distributions more tightly centered around

the true injected effect. The fact that all methods’ density curves

align with the true value suggests that no additional bias was in-

troduced. These results demonstrate that, when assumptions are

reasonably met, variance reduction methods can significantly im-

prove experimental sensitivity without compromising estimator

validity.

Figure 1: ATE distribution across multiple A/A test simula-
tions

Table 1 presents a comprehensive comparison of four variance

reduction methods based on the Confidence Interval Width Reduc-

tion metric. These results are derived from all 18 tests involving

millions of observations, ensuring that the findings are robust and

reflective of real-world experimentation conditions.
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Among the methods, CUPAC achieved the highest reduction in

CI width, with an average reduction of 38.5%, closely followed by

outlier capping (36.7%) indicating its robustness in stabilizing re-

sults by addressing outliers. Meanwhile, CUPED and Doubly Robust

(DR) methods showed moderate effectiveness, with CI reductions of

21.2% and 21.1%, respectively. These findings highlight the potential

of CUPAC and CAPPED to significantly enhance experimental sen-

sitivity, which is critical in detecting subtle shifts in user behavior

or platform performance in large-scale online environments.

We also compare the computation times, as in practical applica-

tions the choice of method should not only be based on statistical

performance but also on computational efficiency, particularly as

the size of the data increases. The computation times for each

method were calculated based on a baseline medium-scale experi-

ment with 2 million observations. The outlier capping (CAPPED)

method is the fastest, making it highly scalable for larger datasets

and making it the baseline method for comparison. In contrast,

methods like CUPAC and DR, which involve the complexity of

model fitting, have much higher computational costs. CUPAC is

21.2 times slower than CAPPED and DR is 31.2 times slower. This

increase in computation time could limit their practicality for very

large experiments. CUPED, with a computation time 5.6 times

slower than CAPPED, offers a good balance between variance re-

duction and computational efficiency.

Method CAPPED CUPED CUPAC DR

CI Width Re-
duction (%)

36.7 21.2 38.5 21.1

Computation
times

- ×5.6 ×21.2 ×31.2

Table 1: Comparison of variance reduction methods. The
table shows the computation time of each method compared
to the baseline fastest method (CAPPED), based on amedium-
sized experiment.

To investigate how sample size influences the effectiveness of

variance reduction methods, we conducted simulations using the

same A/A test setup based on real data. Only the number of observa-

tions sampled from the experiment varied, while the noise level and

treatment effect remained constant. The synthetic treatment effect

was applied to different sample sizes to observe how the variance

reduction methods perform across scales. We ran 100 bootstrap

resamples for each sample size. The CI width reduction for each

method was calculated to assess how much precision improved

with increased sample size.

As shown in Figure 3, all methods demonstrate improved CI

width reduction as the sample size increases. CUPED, CUPAC, and

DR show continued improvement with scale, reflecting their ability

to estimate adjustments more accurately when more data is avail-

able. Results also suggest that while outlier capping helps stabilize

the results by addressing extreme values, it doesn’t benefit as much

from larger sample sizes because it does not account for underlying

relationships between covariates and outcomes.

In Figure 4, we explore how the standard deviation of noise in

the outcome metric affects CI reduction. The noise was added to the

Figure 2: Effect of sample size on confidence interval width
reduction

outcome metric using a synthetic treatment effect, progressively

increasing its standard deviation of added noise, while the sam-

ple size and the average treatment effect remained constant. The

results show that CUPED, CUPAC, and DR experience a decline

in performance as the noise level increases. This decline occurred

because these methods rely on modeling the relationship between

pre-treatment covariates and the outcome, and when the noise

in the data becomes larger, their predictive accuracy and ability

to adjust for treatment effects are compromised. In other words,

the relative power of these covariate adjustment methods is re-

duced. On the other hand, outlier capping directly targets extreme

values without depending on a predictive model, and as such, its

performance is less impacted by noise in the data.

Figure 3: Effect of injected noise on CI width reduction

In Figure 5, we assessed how varying the average treatment effect

size influences CI width reduction. Larger effect sizes enhance the

distinguishability between treatment and control groups, enabling

variance reduction methods to better exploit covariates for adjust-

ment. As expected, methods that rely on covariate adjustments,

such as CUPED, CUPAC, and DR, show significant improvements

in CI width reduction as the effect size increases. This is because

larger effect sizes make it easier for these methods to identify and

leverage the relationship between the pre-treatment covariates and

the outcome, which enhances the precision of the treatment effect

estimate. In comparison, outlier capping shows relatively stable

performance across all effect sizes, with no significant increase in

CI width reduction as the effect size grows.
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Figure 4: Effect size influence on CI width reduction

6 Conclusions and Future Work
In this work, we demonstrated the application of several variance

reduction techniques, including CUPED, CUPAC, Doubly Robust

estimation, and outlier capping, to improve the precision of treat-

ment effect estimation in online experiments. We evaluated these

methods empirically on simulated A/A test setups derived from

real experimental logs and datasets in a commercial A/B testing

environment.

Our findings confirm that both covariate adjustment models -

such as CUPED, CUPAC, and DR - and simpler techniques like

outlier capping can significantly reduce variance and narrow con-

fidence intervals for Average Treatment Effect (ATE) estimates,

resulting in more precise and reliable measurements. Specifically:

• No method introduced significant bias in the tested data.

Despite inherent noise and synthetic treatment effects, the

adjusted estimators produced estimates consistently close to

the injected treatment effect.

• Outlier capping provided substantial CI width reduction

(36.7%) compared to othermethods. Its performance remained

stable across varying effect sizes and noise levels, and it was

the fastest computationally. Therefore, it offers a particu-

larly useful solution in settings where pre-experiment data

or computational resources are limited.

• CUPAC achieved the greatest CI width reduction overall

(38.5%) but incurred significantly higher computational costs.

It is best suited for scenarios where precision is the top

priority and sufficient computational resources are available.

• CUPED and Doubly Robust (DR) estimators provided moder-

ate CI width reductions (approximately 20%). These methods

may be considered when computational efficiency is a factor

or when pre-treatment covariates are reliable, although CU-

PAC generally outperformed them across most evaluation

metrics.

• Covariate adjustment methods are particularly sensitive to

both treatment effect size and noise level. Smaller effects or

higher noise can reduce the effectiveness of these methods

as the signal-to-noise ratio declines.

• Methods like CUPED, CUPAC, and DR show improved vari-

ance reduction and precisionwith larger sample sizes, as they

better capture covariate-outcome relationships and adjust

for baseline differences.

We leave it for future work to evaluate these methods across a

broader range of real-world experiments and verticals. Further in-

vestigations are needed to understand how different characteristics

of experimental data, such as data sparsity or data imbalance, affect

the performance of these methods. Evaluating methods in low-data

or high-noise environments will offer insights into their robustness

and limitations. Future work could include analysis of hyperpa-

rameter optimisation and computational efficiency in large-scale

experiments. Furthermore, benchmarking these methods across

not only continuous, but also business-critical conversion metrics,

could offer deeper insights into the practical deployment of the

methods.
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